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ABSTRACT: We analyze the solutions of a population model with diffusion and strong Allee effect. In particular, we
focus our study on a population that satisfies a certain nonlinear boundary condition and on its survival when constant
yield harvesting is introduced. We discuss, in detail, results for the one-dimensional case.
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1 INTRODUCTION
Reaction diffusion equations which describe the spatiotemporal distributaries and abundance of organisms are often
portrayed by the model

ut = d△u+ uf̃(x, u)

whereu(x, t) is the population density,d > 0 is the diffusion coefficient,△u is the Laplacian ofu with respect to the
variablex, andf̃(x, u) is the per capita growth rate which is influenced by the heterogenous environment. Skellam first
studied such ecology models in [25]. Various reaction diffusion biological models have been studied by [16], previously,
though the most classic example is Fisher’s equation (see [12]) with f̃(x, u) = (1− u). Later, several reaction diffusion
models have been used to describe spatiotemporal phenomenain various disciplines such as biology, physics, chemistry,
and ecology, (see [5], [11], [21], [22], and [26]). Skellam was the first to use the logistic growth ratẽf(x, u) = m(x)−
b(x)u in population dynamics to model the crowding effect. However, a general logistic type model can be described
by a declining growth rate per capita function, such thatf̃(x, u) is decreasing with respect tou. The Allee principle, or
Allee effect ([1], [2], [10], [19], and [24]), describes an increase in per capita growth rate at low population densities. It
can either be strong or weak. For example, if the per capita growth rate is negative at low population densities the Allee
effect is strong. On the other hand, if the per capita growth rate is positive at low population densities it is weak. Thereare
many contributing factors to Allee effect in population dynamics, including inbreeding depression, predator saturation,
less efficient feeding at low densities, shortage of mates, lack of effective pollination, cooperative behaviors, and reduced
effectiveness of vigilance and antipredator defenses.

Several types of nonlinear boundary conditions have been reported in the literature. We examine a boundary in which
α, the fraction of individuals who do not cross the boundary when it is reached, is a function of the population density
itself. This leads to the following boundary condition

α(x, u) =
u

u− d∇u · η
or equivalently,

dα(x, u)∇u · η + [1− α(x, u)]u = 0 (1)

where∇u · η is the outward normal derivative ofu. If α(x, u) = 0 then (1) becomes the Dirichlet boundary condition,
i.e. all individuals that reach the boundary leave the boundary. While, ifα(x, u) = 1 then (1) becomes the Neumann
boundary condition, i.e. all individuals that reach the boundary remain. This boundary condition has only been recently
considered in population dynamics by [5], [6], [7], [14], and [15]. The authors in [17] have also studied a logistic
population model with (1).

In this paper, we initiate study of a one-dimensional population model with Strong Allee effect, nonlinear boundary
condition, and constant yield harvesting on a bounded domain, Ω ⊆ R. Throughout the literature, density dependent
harvesting has been considered extensively, however, constant yield harvesting is popular in disciplines like fisheries
management where harvesting is well regulated. Our main goal is to examine the steady state solutions whend = 1 and

α(x, u) =

{
0; x = 0
u
b
; x = 1.

Namely, we study,

−u
′′ = −u

3 + (a+ b)u2 − abu− c := f(u); (0, 1)

u(0) = 0

−u(1)u′(1) + [u(1)− b]u(1) = 0, (2)

Dynamic Publishers, Inc.



A Population Model with Nonlinear Boundary Conditions and Constant Yield Harvesting 151

where0 < a < b, c ≥ 0 is the constant yield harvesting term, andα(x, u) : Ω x [0,∞) → [0, 1] is a smooth,
nondecreasing function ofu. In the literature, (2) is known as a semipositone problem, since f(0) < 0 whenc > 0.
Finding positive solutions to such problems is challenging(see [3], [20], and [23]). Clearly, studying (2) is equivalent to
analyzing the two boundary value problems

−u
′′ = −u

3 + (a+ b)u2 − abu− c; x ∈ (0, 1)

u(0) = 0

u(1) = 0 (3)

and

−u
′′ = −u

3 + (a+ b)u2 − abu− c; x ∈ (0, 1)

u(0) = 0

u
′(1) = u(1) − b. (4)

In particular, the positive solutions of (3) and (4) are the positive solutions of (2). Using the Quadrature method of Laetsch
(see [18]) the structure of positive solutions of (3) can be found with the aid of Mathematica. In Section 2 we discuss an
adaptation of this Quadrature method for (4). Finally, computational results for (2) will be presented in Section 3.

2 QUADRATURE METHOD FOR (4)
The Quadrature method developed by Laetsch (see [18]) has been used extensively in the past by authors such as, [4], [8],
[13], and [14], among others. We note that Ladner et. al, adapted the Quadrature method for similar boundary conditions
with Logistic growth, see [17]. In this section, we further adapt the Quadrature method to analyze the structure of
positive solutions to (4). DefineF (u) =

∫ u

0
f(s)ds, the primitive off(u). Suppose thatu(x) is a positive solution of

(4) with u′(x0) = 0, for somex0 ∈ (0, 1). Since (4) is an autonomous differential equation,v(x) := u(x0 + x) and
w(x) := u(x0 − x) both satisfy the following initial value problem

−z
′′ = f(z)

z(0) = u(x0)

z
′(0) = 0 (5)

for all x ∈ [0, d) such thatd = min{x0, 1 − x0}. From this, we have thatu(x0 + x) ≡ u(x0 − x) as a consequence
of Picard’s existence and uniqueness theorem. Hence,u(x) is symmetric aboutx0 and must have the general shape
displayed in Figure 1.

x

uHxL
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{2

Ρ

q

x0 1

Figure 1: General shape of positive solution to (4).

whereρ = u(x0) = ‖u‖∞ andq = u(1). It follows thatℓ1 < ρ < ℓ2 and0 ≤ q < ρ with u′(x) ≥ 0 for all x ∈ [0, x0]
andu′(x) ≤ 0 for all x ∈ [x0, 1], where0 < ℓ1 < ℓ2 are the positive real zeros off(x). Multiplying the differential
equation in (4) byu′ and integrating with respect tox then gives,

−(u′)2

2
= F (u) +K. (6)

Substitution ofx = x0 into (6) while using the fact thatu(x0) = ρ andu′(x0) = 0 yields

K = F (ρ). (7)

Also, substitutingx = 1 into (6) and recalling thatu(0) = 0, u(1) = q, andu′(1) = q − b gives

K = F (q) +
(q − b)2

2
. (8)

Combining (7) with (8) we have that

F (ρ) = F (q) +
(q − b)2

2
. (9)
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Now, solving foru′ in (6) yields,

u
′(x) =

√
2[F (ρ)− F (u)]; x ∈ [0, x0] (10)

u
′(x) = −

√
2[F (ρ)− F (u)]; x ∈ [x0, 1]. (11)

This implies that,

u′(x)√
F (ρ)− F (u)

=
√
2; x ∈ [0, x0) (12)

u′(x)√
F (ρ)− F (u)

= −
√
2; x ∈ (x0, 1]. (13)

Integration of (12) and (13) with the use of the first boundarycondition of (4) gives

∫ u(x)

0

ds√
F (ρ)− F (s)

=
√
2x; x ∈ [0, x0] (14)

∫ u(x)

ρ

ds√
F (ρ)− F (s)

= −
√
2(x− x0); x ∈ [x0, 1]. (15)

After substitution ofx = x0 in (14) andx = 1 in (15), we obtain
∫ ρ

0

ds√
F (ρ)− F (s)

=
√
2x0; x ∈ [0, x0] (16)

∫ q

ρ

ds√
F (ρ)− F (s)

= −
√
2(1− x0); x ∈ [x0, 1]. (17)

Finally, subtraction of (17) from (16) gives,
∫ ρ

0

ds√
F (ρ)− F (s)

+

∫ ρ

q

ds√
F (ρ)− F (s)

=
√
2 (18)

Notice that in order for
∫ ρ

0
ds√

F (ρ)−F (s)
to be well defined,F (ρ) > F (s) for all s ∈ [0, ρ). Additionally, the improper

integral is convergent iff(ρ) > 0. Hence, such a positive solution exists iff(u) andF (u) resemble Figures 2 and 3
respectively,

u
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Figure 2: Graph off(u). Figure 3: Graph ofF (u).

whereµ1, ℓi, andθi are the zeros off ′(u), f(u), andF (u) respectively fori = 1, 2. From these figures, we note that
if ρ ∈ (θ1, ℓ2) then both of these conditions hold and the integrals in (18) are well defined. From this and letting (via
solving using Mathematica)

c1 := − 1

27
(a− 2b+

√
a2 − ab+ b2)(−2a+ b+

√
a2 − ab+ b2)

(a+ b+
√

a2 − ab+ b2)

and

c2 :=

√
2(8a2 − 11ab+ 8b2)3 + 2(a+ b)(16a2 − 49ab + 16b2)

729

we establish the following:

Theorem 1. If b ≤ 2a then (4) has NO positive solution, for anyc ≥ 0.

Theorem 2. If b > 2a then (4) has NO positive solution forc ≥ c∗(a, b), wherec∗(a, b) = min {c1, c2}.
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Furthermore, we note that given aρ > 0, x0 ∈ (0, 1) is fixed. Thus we need a uniqueq ∈ [0, ρ) corresponding to each
ρ-value such that (9) is satisfied. Otherwise, uniqueness of solutions to the initial value problem, (5), would be violated.
Let

H(x) := F (x) +
(x− b)2

2

We see thatH(0) = b2

2
, H ′(x) = −x3+(a+ b)2+(1−ab)x− c− b, andH ′(0) = −c− b < 0. For a unique solution,

q ∈ [0, ρ), of (9) to exist,H(x) must have the structure exemplified in Figure 4,

b2

2

FHΡL

r qΡ m3

HHm3L

x

HHxL

Figure 4: Graph of H(x).

wherem3(a, b, c) is a zero ofH ′(x). So, for such a uniqueq to existF (ρ) > b2

2
must be satisfied. SinceH(ℓ2) > F (ℓ2),

it follows that this will happen if and only if

F (ℓ2) >
b2

2
.

In particular,F (ℓ2(a, b, c)) >
b2

2
must be satisfied. But,dF

dc
= dℓ2

dc
f(ℓ2(a, b, c)) +

∫ ℓ2
0

∂f

∂c
dt = −ℓ2 < 0. Hence, it is

necessary thatF (ℓ2(a, b, 0)) >
b2

2
. After solving using Mathematica, this becomes

b > b1 := a+
√

a2 + 6

which leads to the following results:

Theorem 3. If b > a+
√
a2 + 6 then (4) has NO positive solution forc > c∗∗(a, b), wherec∗∗(a, b) < min {c1, c2} is

the unique root ofF (ℓ2(a, b, c)) =
b2

2
.

Theorem 4. If b > a+
√
a2 + 6 andc ≤ c∗∗(a, b) then there exists an uniquer(a, b, c) ∈ (θ1, ℓ2) such thatF (r) = b2

2
.

Moreover, ifρ ∈ [r, ℓ2) then

G(ρ, q(ρ)) :=

∫ ρ

0

ds√
F (ρ)− F (s)

+

∫ ρ

q(ρ)

ds√
F (ρ)− F (s)

is well defined. In this case,q = q(ρ) ≤ ρ is the unique solution ofF (ρ) = H(q).

We now state and prove this section’s main result.

Theorem 5. Let b > a +
√
a2 + 6 and c ≤ c∗∗(a, b). Then (4) has a positive solution,u(x), with ‖u‖∞ = ρ and

u(1) = q if and only ifG(ρ, q) =
√
2 for ρ ∈ [r, ℓ2) andq ∈ [0, ρ).

Proof. let a, b > 0 s.t. b > a+
√
a2 + 6 andc < c∗∗(a, b)

(⇒:) shown through preceding discussion.
(⇐:) suppose:G(ρ) =

√
2 for someρ ∈ [r, ℓ2).

Defineu(x) : (0, 1) → R by

∫ u(x)

0

ds√
F (ρ)− F (s)

=
√
2x; x ∈ [0, x0]

∫ u(x)

ρ

ds√
F (ρ)− F (s)

= −
√
2(x− x0); x ∈ [x0, 1]. (19)

We now show thatu(x) is a positive solution to (4). Clearly, the turning point,x0, is given by

x0 =
1√
2

∫ ρ

0

ds√
F (ρ)− F (s)

.
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Note that the function,1√
2

∫ u(x)

0
ds√

F (ρ)−F (s)
, is a differentiable function ofu which is strictly increasing from0 to x0

asu increases from0 to ρ. Thus, for eachx ∈ [0, x0], there exists a uniqueu(x) that satisfies
∫ u(x)

0

ds√
F (ρ)− F (s)

=
√
2x. (20)

(21)

Moreover, by the Implicit Function theorem,u is differentiable with respect tox. Differentiating (20) gives,

u
′(x) =

√
2[F (ρ)− F (u)]; x ∈ [0, x0] (22)

Similarly,u is a decreasing function ofx for x ∈ [x0, 1] which yields,

u
′(x) = −

√
2[F (ρ)− F (u)]; x ∈ [x0, 1] (23)

Combining (22) with (23) we arrive at

−(u′)2

2
= F (ρ)− F (u(x)).

Differentiating once more, we have,

−u
′′(x) = f(u(x)).

Hence,u(x) satisfies the differential equation in (4). Also, clearlyu(0) = 0, fulfilling the first boundary condition of (4).

Now, from our assumption,G(ρ) =
√
2, it follows thatu(1) = q(ρ). SinceF (ρ) = H(q(ρ)) = F (q) + (q−b)2

2
, we

have that

u
′(1) = −

√
2[F (ρ)− F (q)]

= −
√

(q − b)2

= (q − b)

⇒ u
′(1) = u(1)− b.

Thus, the second boundary condition in (4) is satisfied.
�

3 COMPUTATIONAL RESULTS
In this section, we present computational results to (2) by combining the positive solutions from (3) and (4). For what
follows, we are particularly interested in the case whena = 1. For (3), the structure of positive solutions is known (see
[9] where the authors ascertained the structure of positivesolutions via the standard Quadrature method). For (4), we
recall Theorem 5 from section 2, and we provide an evolution of the bifurcation curve of positive solutions by plotting
the level sets of

G(ρ, q)−
√
2 = 0 (24)

for ρ ∈ [r, ℓ2). A numerical root-finding algorithm was implemented in Mathematica to solve equation (24). Due to the
nature of the improper integrals inG(ρ, q), the procedure was computationally expensive. Combining results from the
two cases, (3) and (4), we are able to analyze the positive solutions of (2). Our computational results for the casea = 1
suggest the following results.

Case 1. For a = 1, if b < b1 (someb1 ≈ 4.77217) then (2) has NO positive solution for everyc ≥ 0.

Also, our computations indicate the following existence results fora = 1.

Case 2. For a = 1, if b ∈ [b1, b2] (someb2 ≈ 5.04013) then there exists ac0 > 0 such that if

(1) 0 ≤ c < c0 then (2) has exactly 2 positive solutions.

(2) c = c0 then (2) has a unique positive solution.

(3) c > c0 then (2) has NO positive solution.

Figure 5 shows an example of Case 2.
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Figure 5:ρ vs c for a = 1, b = 4.78.
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Case 3. For a = 1, if b ∈ (b2, b3] (someb3 ≈ 5.75907) then there exist0 < c0 < c1 such that if

(1) c0 ≤ c < c1 then (2) has exactly 2 positive solutions.

(2) 0 ≤ c < c0 or c = c1 then (2) has a unique positive solution.

(3) c > c1 then (2) has NO positive solution.

Figure 6 exemplifies Case 3
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Figure 6:ρ vs c for a = 1, b = 5.1.

Case 4. For a = 1, if b ∈ (b3, b4) (someb4 ≈ 7.51988) then there exists ac0 > 0 such that if

(1) 0 ≤ c ≤ c0 then (2) has a unique positive solution.

(2) c > c0 then (2) has NO positive solution.

Figure 7 illustrates Case 4.
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Figure 7:ρ vs c for a = 1, b = 12.

Case 5. For a = 1, if b ∈ [b4, b5] (someb5 ≈ 13.128) then there exist0 < c0 < c1 such that if

(1) 0 ≤ c < c0 then (2) has exactly 3 positive solutions.

(2) c = c0 then (2) has exactly 2 positive solutions.

(3) c0 < c ≤ c1 then (2) has a unique positive solution.

(4) c > c1 then (2) has NO positive solution.

Figures 8 and 9 show examples of this case.
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Figure 8:ρ vs c for a = 1, b = 8.
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Figure 9:ρ vs c for a = 1, b = 13.12.

Case 6. For a = 1, if b ∈ (b5, b6) (someb6 ∈ (13.128, 13.128 + ǫ) whereǫ > 0 is small) then there exist0 < c0 <

c1 < c2 such that if

(1) 0 ≤ c ≤ c0 or c1 ≤ c < c2 then (2) has exactly 3 positive solutions.

(2) c0 < c < c1 or c = c2 then (2) has exactly 2 positive solutions.

(3) c2 < c ≤ c3 then (2) has a unique positive solution.

(4) c > c3 then (2) has NO positive solution.

Figures 10 and 11 show examples of this case.
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Figure 10:ρ vs c for whena = 1, b = 13.5.
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Figure 11:ρ vs c for whena = 1, b = 14.

Remark 1. For b > 14, we were unable to computationally generate bifurcation curves for (4). This is due to the fact
that for b large, theρ−values are too close to their upper bound,ℓ2.
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